Monday, March 30, 2009

trigonometry

ฟังก์ชันตรีโกณมิติ (อังกฤษ: Trigonometric function) คือ ฟังก์ชันของมุม ซึ่งมีความสำคัญในการศึกษารูปสามเหลี่ยมและปรากฏการณ์ในลักษณะเป็นคาบ ฟังก์ชันอาจนิยามด้วยอัตราส่วนของด้าน 2 ด้านของรูปสามเหลี่ยมมุมฉาก หรืออัตราส่วนของพิกัดของจุดบนวงกลมหนึ่งหน่วย หรือนิยามในรูปทั่วไปเช่น อนุกรมอนันต์ หรือสมการเชิงอนุพันธ์ รูปสามเหลี่ยมที่นำมาใช้จะอยู่ในระนาบแบบยุคลิด ดังนั้น ผลรวมของมุมทุกมุมจึงเท่ากับ 180° เสมอ

ในปัจจุบัน มีฟังก์ชันตรีโกณมิติอยู่ 6 ฟังก์ชันที่นิยมใช้กันดังตารางข้างล่าง (สี่ฟังก์ชันสุดท้ายนิยามด้วยความสัมพันธ์กับฟังก์ชันอื่น แต่ก็สามารถนิยามด้วยเรขาคณิตได้)
ฟังก์ชัน ตัวย่อ ความสัมพันธ์

ไซน์ (Sine) ตัวย่อ sin
--------------------------------------------------------------------------------------------
โคไซน์ (Cosine) ตัวย่อ cos
------------------------------------------------------------------------------------------
แทนเจนต์ (Tangent) ตัวย่อ tan
(หรือ tg) ,
โคแทนเจนต์ (Cotangent) cot
(หรือ ctg หรือ ctn) \cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta} = \tan \left(\frac{\pi}{2} - \theta \right) \,
ซีแคนต์ (Secant) sec \sec \theta = \frac{1}{\cos \theta} = \csc \left(\frac{\pi}{2} - \theta \right) \,
โคซีแคนต์ (Cosecant) csc
(หรือ cosec) \csc \theta =\frac{1}{\sin \theta} = \sec \left(\frac{\pi}{2} - \theta \right) \,

ความสัมพันธ์ระหว่างฟังก์ชันเหล่านี้ อยู่ในบทความเรื่อง เอกลักษณ์ตรีโกณมิติ












ค่าของฟังก์ชันตรีโกณมิติ

No comments:

Post a Comment